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Abstract.—The recently developed empirical percentile (EmP) method, a technique for deriving standard

weight (W
s
) equations, putatively reduces the length-related biases that often plague such equations. To

determine whether the EmP method is superior to the regression line–percentile (RLP) method in reducing

length-related biases, we developed new W
s

equations by applying both methods to two morphologically

distinct species, walleye Sander vitreus and black crappie Pomoxis nigromaculatus. We also investigated

diagnostic approaches to provide quality control for weight–length data. We evaluated the new W
s

equations

with filtered independent data to determine which equation reduced length bias the most. We suggest a

protocol for evaluating length-related bias using an independent data set. Our results showed that for

randomly selected walleye populations, the RLP method did not have any length-related biases when relative

weight (W
r
) was plotted as a function of length. However, the W

r
values calculated from the EmP W

s

equations were length biased when the latter were applied to those same populations. Both methods generated

W
s

equations that were length biased when W
r

was plotted as a function of length for black crappies. Further,

the absolute difference in W
r

between the RLP and EmP methods indicates that there is little difference

between the methods as far as their relevance to management is concerned.. Based on these results, we believe

that revising existing W
s

equations using the EmP method is unnecessary and that the RLP technique should

remain the standard for developing W
s

equations pending the development of an approach that clearly

eliminates methodological length bias.

Length and weight data for fishes provide some of

the most important information for fisheries manage-

ment (Anderson and Neumann 1996). Analysis of these

length–weight data serve many purposes, frequently

providing indices to describe the well-being or

condition of fishes (e.g., Le Cren 1951; Wege and

Anderson 1978; Murphy et al. 1990; Anderson and

Neumann 1996; Bister et al. 2000; Blackwell et al.

2000). Specifically, the deviation between the actual

weights of fish within a population and an expected

length-specific weight can indicate whether abiotic and

biotic conditions are favorable for that population. This

information may determine whether management

actions (e.g., habitat improvements, prey supplementa-

tion, or harvest regulations) should be implemented or

whether previous actions have been successful (Cone

1989; Murphy et al. 1990; Blackwell et al. 2000).

The regression line–percentile method (RLP; Mur-

phy et al. 1990) has been the long-standing method for

developing standard weight (W
s
) equations for both

game and nongame fishes (e.g., Bister et al. 2000).

However, it is not without flaws. Murphy et al. (1990)

suggested that the high degree of linear correlation

between log
10

weight and log
10

length made extrapo-

lation of population regressions relatively safe. Gerow

et al. (2004) noted that the linearization and extrapo-

lation of the weight–length relationship for fishes may

result in length-related biases. This is particularly

problematic if the regression of third-quartile weights

by lengths for different populations is nonlinear.

The empirical percentile method (EmP) method was

proposed to overcome some of the potential issues of

the regression line–percentile (RLP) method (Gerow et

al. 2005). The EmP method uses the 75th percentile of

the observed weights of fish by 1-cm increments as the

statistical population being modeled rather than

modeled weights, as used in the RLP technique.

Further, the EmP method models a curvilinear

relationship between length and weight rather than a

linearized log
10

relation. Richter (2007) used both the

EmP and the RLP method to develop W
s

equations for

two catostomid species and found that the EmP method

reduced length bias compared with the RLP method.

Conversely, Rennie and Verdon (2008) developed

several new W
s

equations for lake whitefish Coregonus
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clupeaformis and found that the EmP W
s

equation was

significantly length biased, whereas the RLP W
s

equation was not. During model validation Gerow et

al. (2005) used only resampled data from a small data

set. The use of resampled data is subject to the

constraints of the original data set (e.g., sample size,

sampling distribution) and assumes that the data set is

representative of the true population (Haddon 2001).

The original evaluation of the EmP method was done

using a small, resampled data set that may or may not

have been representative of the population, potentially

influencing differences in the determination of length-

related bias.

Quality control of weight–length data are important

because the quality of any empirical weight–length

model hinges on the reliability of that data. In addition,

a sound protocol for assessing length-related bias is an

important element in the evaluation and recommenda-

tion of W
s

equations. No current methods for filtering

data (i.e., the removal of aberrant data) or for

evaluating length-related biases (e.g., the number of

populations that should be considered) were found in

the literature.

Our first objective was to evaluate techniques for

filtering W
s

equation-development data sets using both

the EmP and RLP methods for two species having

distinctly different body morphologies and maximum

lengths, walleye Sander vitreus and black crappie

Pomoxis nigromaculatus. Our second objective was to

evaluate model fit and determine whether length-

related biases exist in either method. Development and

evaluation of independently derived W
s

equations

provided insight on quality assurance of data and the

steps necessary for evaluating length-related bias. From

that analysis we developed suggestions for filtering

data and a protocol to evaluate length-related biases.

Methods

Development and filtering of data for W
s

equa-
tions.—We used walleye and black crappie data from

Gerow et al. (2005) to evaluate length-related biases in

W
s

equations (K. Gerow, University of Wyoming,

unpublished data; Table 1). Hereafter, we refer to these

data sets as ‘‘development data’’ because they were

used to develop new W
s

equations. Curvilinear W
s

equations were derived from these data using the EmP

method, as described by Gerow et al. (2005). Limited

quality control was performed on the data before

developing these W
s

equations; thus, we refer to these

equations as the ‘‘unfiltered development EmP equa-

tions’’ (Figure 1). Additionally, we used the W
s

equations published for walleyes and black crappies

as developed via the RLP technique (Murphy et al.

1990; Neumann and Murphy 1991); these equations we

termed the ‘‘unfiltered development RLP equations’’

(Figure 1).

Next, a second set of W
s

equations were derived by

filtering our developmental data set via a diagnostic

approach (Belsley et al. 1980) and the recommenda-

tions of Gerow et al. (2005; Table 1). Data-filtering

standards to assure quality of resulting W
s

equations

have not received extensive consideration. Additional-

ly, data quality is important in the development of any

W
s

equation, regardless of the technique used, because

aberrant data may influence model fit and bias

subsequent prediction (Belsley et al. 1980). The

coefficient of determination (R2) is used to provide a

simple interpretation of weight–length model fit

(Murphy et al. 1990). However, the interpretation of

an acceptable value of R2 may differ among research-

ers, and R2 does not provide any diagnostic utility for

TABLE 1.—Numbers of walleye and black crappie popula-

tions and individuals in the unfiltered and filtered develop-

ment data sets used to examine standard weight equations. The

filtering protocol consisted of removing observations for

which the difference in fits, jDFFITSj, was greater than the

size-adjusted cutoff value (Belsley et al. 1980).

Species

Unfiltered Filtered

Populations Individuals Populations Individuals

Walleye 102 34,575 102 33,589
Black crappie 84 18,741 84 18,340

FIGURE 1.—Schematic illustrating the step-by-step process

of developing W
s

equations for walleyes and black crappies

using the empirical percentile (EmP) and regression line–

percentile (RLP) methods (see text for additional details).
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detecting suspect individual observations (Kvålseth

1985). Therefore, we used a diagnostic approach to

evaluate log-transformed weight–length data by calcu-

lating the difference in fits (jDFFITSj) values (Belsley

et al. 1980) as an analytical tool for filtering

questionable (i.e., large residual effect) observations

within populations. To identify potentially influential

observations in the model, we used the size-adjusted

cutoff

ffiffiffiffiffi
p

n
;

2

r

where p is the number of parameters in the model and n
is sample size. The size-adjusted cutoff provides a

method to objectively remove observations that are

influential in relation to others (Belsley et al. 1980).

For our filtered development W
s

equations, we required

a minimum of 50 fish per 1-cm length-class (Gerow et

al. 2005) from each of at least 20 different populations.

After filtering, the development data sets were

truncated to include minimum and maximum lengths

of 160–740 mm for walleyes and 130–370 mm for

black crappies, as suggested by Gerow et al. (2005).

Standard weight equations were developed for both

walleyes and black crappies from filtered data sets

based on the RLP (Murphy et al. 1990) and the EmP

methods (Figure 1; Gerow et al. 2005).

Impacts of data filtering on W
s

equations.—We

tested homogeneity of slopes and intercepts between

filtered and unfiltered species weight–length regres-

sions by using analysis of covariance (ANCOVA) to

determine whether filtering significantly altered the

regression models. To quantify changes in predictions

of weight from the weight–length regression equa-

tions from filtering the data, we calculated the percent

difference for each length category (Gabelhouse

1984) as

%Difference

¼ ½ðpredicted � observedÞ=observed�3 100;

where ‘‘observed’’ is the mean observed weight of each

length category and ‘‘predicted’’ is the mean predicted

weight of each length category calculated from the

filtered data set regression. We chose to summarize

over length categories because they represent suitable

resolution for management applications.

Comparisons of W
s

equations for length-related bias
with independent data.—Standard weight equations

should be free of length-related bias when they are

applied to an independent data set (Blackwell et al.

2000). Independent weight–length data from across the

geographic range of walleyes and black crappies in the

USA were solicited from personnel at state agencies and

universities (Table 2). Contributed data sets were

screened similar to developmental data sets. Four W
s

equations [unfiltered EmP, filtered EmP, unfiltered RLP,

and filtered RLP (Murphy et al. 1990; Neumann and

Murphy 1991)] were then tested with the independent

data to determine which equation had the least amount

of length-related bias. We chose to use independent data

instead of resampled data to alleviate any potential

biases associated with small sample sizes in the original

data set and to encompass more natural variability across

the geographic range of the two species.

Using each of the four W
s

equations, we separately

calculated W
s

values for all fish of both species from

the independent data set. Residuals were calculated as

observed weight minus W
s
. We first visually examined

plots of third-quartile residuals as a function of total

length as a method to assess goodness or lack of fit

(Pope and Kruse 2007). We evaluated the management

significance of each W
s

equation by examining the

magnitude of the biases resulting from each equation.

Using the third-quartile weight of fish in each length

category (Gabelhouse 1984) from our independent data

set, we calculated the percent error represented by the

third-quartile residuals by length category from each

W
s

equation.

Assessing equations with independent population
data.—In addition to generating the third-quartile

residuals, we evaluated each W
s

equation at the

population level. Using a stratified random design,

we selected a minimum of 30 independent data sets

from states for both species to test the application of the

four W
s

equations. For walleyes, we randomly selected

five data sets from each state that contributed more

than five sets; for the three that did not, we randomly

selected one data set from Montana, two from

Nebraska, and one from Utah. For black crappies, we

randomly selected six data sets from each state that

TABLE 2.—Independent black crappie and walleye weight–

length data solicited from state agencies and universities from

across the species’ geographic range. Blank cells indicate that

no data were available.

State

Number of
populations

Number of
individuals

Walleye Black crappie Walleye Black crappie

Georgia 11 40 3,378 13,076
Iowa 21 27 948 1,281
Kansas 8 20,816
Minnesota 71 82 7,423 3,067
Montana 2 3,219
Nebraska 5 4 435 289
South Dakota 27 19 4,624 2,258
Utah 2 672
Wisconsin 199 27 26,010 1,346
Total 345 199 67,525 21,317
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contributed more than six sets; for Nebraska, we

randomly selected two of four contributed data sets.

Mean W
r

values for each 1-cm length-class were

calculated from each W
s

equation and plotted as

function of total length. We then regressed mean W
r

against total length as computed by each of the four W
s

equations for both species. To determine which W
s

equation best fit the recommendations of a zero slope

and intercept of 100 W
r

units (Wege and Anderson

1978), we tested the parameters of each population-

level W
r

regression against total length via simple t-

tests (H
0
: b

0
¼ 100 and H

0
: b

1
¼ 0) using PROC REG

in SAS version 9.1 (SAS 2005).

Because we expected some populations to exhibit

slopes significantly different from zero (Willis 1989),

we examined the total number and directionality of

significant slopes and intercepts. For each W
s

equation,

we summed the number of significant positive and

negative slopes and the number of significant intercepts

greater than 100 and less than 100. We tested the

hypothesis that the number of significant positive and

significant negative slopes were equal (H
0
: n

pos
¼ n

neg
)

via a v2 goodness-of-fit test. If there were no length-

related biases present in W
s

equations, we would expect

no significant differences in the number of slopes

differing from zero in a positive or negative direction.

Similarly, we used a v2 test to test the hypothesis that

the number of intercepts significantly greater than 100

and significantly less than 100 (H
0
: N

.100
¼ N

,100
)

were equal.

Two large (N . 500) and two small (N , 100) test

population data sets for each species (walleye ¼
populations A, B, C, and D; black crappie ¼
populations E, F, G, and H) were used to demonstrate

the effect of suspect observations. Large (populations

A, B, E, and F) and small (C, D, G, and H) sample

sizes were chosen for this evaluation to represent best-

and worst-case scenarios regarding the affect of

aberrant data on population weight–length models.

For these populations, we tested via simple paired t-

tests whether regression parameters were significantly

different for equations derived from development and

filtered data and whether predicted weights differed

between those equations. For all statistical tests, a ¼
0.05.

Results

When the EmP technique (Gerow et al. 2004) was

applied to the unfiltered development data set it

produced the following equations:

log10ðWsÞ ¼ �9:626þ 6:171 3 log10ðTLÞ
� 0:714 3 log10ðTLÞ2

for black crappies and

log10ðWsÞ ¼ �4:814þ 2:603 3 log10ðTLÞ
þ 0:122 3 log10ðTLÞ2

for walleyes, where W
s

is in grams and total length

(TL) is in millimeters.

Following the data filtering protocols, the EmP

technique produced the equation

log10ðWsÞ ¼ �4:934þ 2:734 3 log10ðTLÞ
þ 0:135 3 log10ðTLÞ2

for black crappies and the equation

log10ðWsÞ ¼ �4:866þ 2:661 3 log10ðTLÞ
þ 0:111 3 log10ðTLÞ2

for walleyes; the RLP technique produced the equation

log10ðWsÞ ¼ �5:523þ 3:304 3 log10ðTLÞ

for black crappies and the equation

log10ðWsÞ ¼ �5:422þ 3:165 3 log10ðTLÞ

for walleyes. Filtering weight-length data in the

development data sets resulted in a 2.9% sample size

reduction for individual walleyes and a 2.1% reduction

for black crappies (Table 1).

Size-adjusted jDFFITSj cutoff values revealed

influential observations in each of the eight test

populations (Table 3; Figure 2). Removing question-

able observations caused shifts in regression parameter

estimates, although shifts were not always significant

(Table 3). There were no significant differences in

parameter estimates (b
0

and b
1
) derived from devel-

opment and filtered data for walleye populations, but

three of the four black crappie populations exhibited a

significant shift. Predicted weights from development

and filtered data differed significantly in three of the

four walleye populations and in three of four black

crappie populations (Table 4). We observed a greater

number of significantly different predicted weights in

large populations compared with smaller populations

(Table 4). Due to the obvious differences in unfiltered

and filtered data, we proceeded with our analyses using

only filtered data.

Third-quartile residuals (calculated as observed

weight minus W
s
) for the independent data set from

the two equations produced no consistent pattern with

walleye length (Figure 3). For walleyes less than

trophy length (760 mm), the biases in both W
s

equations represented less than 5% of third-quartile

walleye weight (Figure 4). For the filtered RLP and the

filtered EmP W
s

equations, bias was less than 2% for

substock, stock–quality (S–Q), and quality–preferred
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(Q–P) length categories. In the preferred–memorable

(P–M) and memorable–trophy (M–T) length catego-

ries, bias was less than 4.5% for the filtered RLP W
s

equation and less than 1.5% for the filtered EmP W
s

equation. For black crappie, bias was less than 5% of

black crappie weight for both the filtered RLP and the

filtered EmP W
s

equations in the S–Q, Q–P, P–M, and

M–T length categories (Figure 4). In the substock and

greater than T length categories, bias was greater than

8% for both the filtered RLP and filtered EmP W
s

equations. For length-classes and categories in which

individuals are most abundance (S–Q, Q–P, and P–M),

the absolute differences in W
r

were less than 3.5 for

walleyes and 3.0 for black crappies (Figure 5).

Comparisons of regression parameters of mean W
r

values (by 1-cm length-class) plotted as a function of

total length for randomly selected populations from

each state were found to exhibit no geographical

pattern for walleyes or black crappies (data available

from corresponding author). When W
r

was regressed as

a function of total length, both equations produced

slopes significantly different from zero and intercepts

significantly different from 100 W
r

units (Table 5;

stratified randomly selected data sets by state from both

species). The EmP-derived equation for walleyes

showed significantly more negative slopes than

positive slopes in randomly selected populations. For

black crappie, both W
s

equations showed significantly

more negative than positive slopes when evaluated

with independent data. Only one black crappie

population from the state of Georgia was significantly

positive for both black crappie W
s

equations. We also

found significant differences in the number of

intercepts that were greater than 100 and less than

100 W
r

units for both species. For walleyes, the RLP

equations had significantly more intercepts greater than

100, but there were no differences between the number

of intercepts greater than 100 or less than 100 for the

EmP equations. For black crappie, both W
s

equations

produced significantly more intercepts greater than 100

W
r

units.

Discussion

Contrary to Gerow et al. (2005), we found that RLP-

and EmP-derived equations performed similarly for

walleyes and black crappies. We believe that our

findings are different from those of Gerow et al. (2005)

because our W
s

equations were tested with a large,

filtered, independent data set. Gerow et al. (2005)

simulated a data set based upon one population from

their development data set that probably was of

insufficient size and did not encompass the geographic

range of the species. The variability inherent in a large,

geographically diverse data set would certainly be

different from the limited variability found in a data set

resampled (even with replacement) and constrained by

a limited geographic area and naturally occurring

weight at length variability. Though individual fish

populations are often considered independent for

comparison purposes, modeling fish condition, as is

done with W
r
, requires a large number of data sets from

a large area. Resampling one population that is similar

in growth form to those used in model development

represents pseudovalidation rather than true model

evaluation (Haefner 2005). Although the possibility

exists that the differences found between Gerow et al.

(2005) and our study were an artifact of the data set we

used, we believe that conclusions based upon inde-

pendent data (rather than resampled data) better reflect

the behavior of both the RLP and EmP methods.

We found that W
s

equations produced with both the

EmP and the RLP methods resulted in length-related

biases in larger-sized walleyes and black crappies. We

believe a scarcity of data in the upper extreme length

TABLE 3.—Regression parameter estimates for two large (N . 500) and two small (N , 100) test populations (see Figure 2

and Table 4) of walleyes and black crappies used to assess the effects of suspect data. Influential data points were identified and

removed using size-adjusted differences in fits, jDFFITSj. Asterisks indicate that the parameter estimates differed significantly

(b
0
: P . F; b

1
: P . jtj) between regression models based on unfiltered and filtered data sets.

Population

Unfiltered data Filtered data

jDFFITSj range
Size-adjusted

cutoffN b
0

b
1

R2 N b
0

b
1

R2

Walleye

A 523 �5.4239 3.1594 0.988 515 �5.4105 3.1531 0.994 0.359–0.666 0.151
B 698 �5.3136 3.0898 0.991 677 �5.3434 3.1021 0.993 0.345–0.340 0.131
C 96 �5.2364 3.0757 0.993 92 �5.2220 3.0706 0.993 0.0002–0.771 0.354
D 90 �5.3196 3.1188 0.940 88 �5.4384 3.1646 0.936 0.0008–0.948 0.365

Black crappie

E 703 �6.0802 3.5153 0.966 675 �5.9890* 3.4800* 0.979 0.290–0.182 0.131
F 876 �5.9190 3.4570 0.961 849 �5.9260 3.4593 0.965 0.353–0.273 0.117
G 49 �5.3133 3.1977 0.993 47 �5.1072* 3.1118* 0.995 0.002–1.54 0.495
H 74 �5.0067 3.0677 0.974 68 �4.6005* 2.8899* 0.964 0.002–1.44 0.403
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ranges for both walleyes and black crappies probably

contributes to the length-related biases observed in W
s

equations derived from either technique. Though the

independent data set in our study was large, there were

still only 16 walleyes and 80 black crappies greater

than trophy length derived from seven different

walleye populations from five states and 16 different

black crappie populations from four different states. In

length categories for which individuals were most

abundant, (i.e., S–Q, Q–P, and P–M), predictions of

third-quartile weight from filtered RLP and EmP W
s

equations differed by no more than 4.12%. For

FIGURE 2.—Relationships between log
10

transformed weight and length data for (A)–(D) four walleye populations and (E)–
(H) four black crappie populations. The eight populations include four large ones (N . 500; panels A, B, E, and F) and four

small ones (N , 100; panels C, D, G, and H). See Table 3 for additional details.
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TABLE 4.—Percent differences in predictions of mean weight calculated from regressions based on unfiltered and filtered log
10

transformed weight–length data for four test populations of walleyes and black crappies (see Figure 2 and Table 3). Blank cells

indicate that no fish of that length category (see Figure 5 or 6) were in that population. Asterisks indicate populations for which

the predicted weights from filtered data were significantly different (paired t-test; P , 0.05) from those from unfiltered data.

Population n

Length categorya

S–Q Q–P P–M M–T . T

Walleye

A* 523 �0.6 �0.6 �0.7 �0.8
B* 698 0.2 0.5 0.9
C* 96 0.4 0.2 0.1
D 90 �0.5 0.3 1.6

Black crappie

E* 703 �9.5 �11.2 �12.4 �13.4 �14.4
F* 876 0.3 0.3 0.3 0.3
G 49 3.5 0.5 �0.6 �1.8
H* 74 1.3 �2.2 �5.4 �9.8 �11.9

a S¼ stock, Q ¼ quality, P ¼ preferred, M¼ memorable, and T ¼ trophy.

FIGURE 3.—Third-quartile residuals (observed weight less

W
s
) calculated from W

s
equations developed with the

regression line–percentile (RLP) and empirical percentile

(EmP) methods using filtered data only. The residuals were

calculated from an independent data set for (A) walleyes (N¼
67,142) and (B) black crappies (N ¼ 21,317) from nine

different states across the United States. The dashed vertical

lines represent the upper and lower limits of the applicable

length range for the EmP method; the dotted horizontal lines

indicate residuals of zero.

FIGURE 4.—Absolute percent errors associated with the

predictions of third-quartile weights from W
s

equations

derived from filtered data for (A) walleyes and (B) black

crappies. Length category abbreviations are as follows: S ¼
stock, Q ¼ quality, P ¼ preferred, M ¼ memorable, and T ¼
trophy.
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walleyes, the RLP and the EmP methods produced

estimates of third-quartile weights that deviated from

observed values by up to 16.5% for large (.trophy

size) and 11.4% for small (�substock) fish.

Sampling deviations in the largest and smallest size-

classes may have high influence on the generation of W
s

equations by both the RLP and EmP methods. Models

are only as good as the data used in their construction

(Burnham and Anderson 2002), and as data points in the

upper length-classes become scarce, the precision of

those data decrease. Further, size bias in data for the

smaller size-classes may also weaken models. In our

study, biased standard weight predictions were ob-

served in the largest size -classes for walleyes and in the

smallest and largest size-classes for black crappie.

However, very few fisheries are managed for trophy or

substock fish. The relatively small deviation we found

between observed and predicted weights in the

moderate-sized length categories may not be a prag-

matic concern for fisheries managers.

Results from evaluating W
s

equations with indepen-

dent, randomly selected populations showed a mix of

significant and nonsignificant slopes and intercepts

when mean W
r

was regressed as a function of total

length. These results suggest that ensuring a represen-

tative sample of the geographic range of the species is

essential during W
s

development and evaluation.

Brown and Murphy (1996), Gerow et al. (2005), and

Brenden and Murphy (2006) stated that at least 50

different populations need to be included in W
s

equation development for both methods. Murphy et

al. (1990) further suggested that the 50-population

minimum be collected from the entire range of the

species, not just a localized region. For example, if the

majority of populations used in W
s

development were

collected from one state, or small region, then that

geographic area would influence how well or poorly

the W
s

equation may perform across the species range.

When developing W
s

equations for species with

limited geographic ranges or restricted growth forms,

there may be conditions requiring use fewer than 50

populations during W
s

equation development (Brown

FIGURE 5.—Absolute differences in mean relative weight

based on standard weight equations derived from the

regression line–percentile and empirical percentile methods

with filtered data for (A) walleyes and (B) black crappies. The

absolute differences are highest at the extremes of the length

ranges but are still less than 6 for all length categories for both

species. The dashed vertical lines mark the length categories

noted in Figure 4 (S, Q, . . ., T).

TABLE 5.—Number of positive (Pos) and negative (Neg) slopes and intercepts (.100 and ,100) that were significantly

different from zero (slopes) and 100 (intercepts) when relative weights (W
r
) derived from empirical percentile (EmP) and

regression line–percentile (RLP) W
s

equations (using filtered data only) were plotted against 10-mm length-class for stratified-

randomly selected populations (N) by state. The P-values are from v2 tests of the hypotheses that the number of slopes that were

positive would equal the number that were negative and, similarly, that the number of intercepts .100 would equal the number

,100.

Species N

RLP EmP

Slopes Intercepts Slopes Intercepts

Pos Neg .100 ,100 Pos Neg .100 ,100

Walleye 35 12 8 6 21 3 16 9 16
P . 0.10 P , 0.025 P , 0.005 P . 0.25

Black crappie 32 1 21 17 3 1 23 18 1
P , 0.005 P , 0.025 P , 0.005 P , 0.005

662 RANNEY ET AL.



and Murphy 1996). Gerow et al. (2005) stated that the

best balance between the number of fish populations,

the number of fish from each population, and the

number of fish per length-class has yet to be

determined; however, sample size benchmarks will

probably vary because of broad differences in species

length ranges and body shapes. Richter (2007) was able

to collect the recommended minimum number of

populations for bridgelip suckers Catostomus colum-
bianus and largescale suckers C. macrocheilus, even

though both of these species have a small spatial

distribution (i.e., Pacific Northwest). Additionally,

Didenko et al. (2004) found that the number of

populations from which they developed W
s

equations

for several rare, nongame fishes was acceptable,

according to the methods described by Brown and

Murphy (1996).

Recommendations

Quality control (i.e., data filtering) should be done

before development of a W
s

equation. Calculating

jDFFITSj values and the size-adjusted cutoff from

log
10

transformed weight–length regressions will

reveal influential observations within each population.

From our evaluation, these outliers corresponded well

to observations with abnormally high and low relative

condition factor (K
n
) values relative to the population

and extreme condition values (W
r
, 60 and W

r
. 160;

Brown and Murphy 1991). Removing aberrant data

pairs from the data sets used in developing W
s

equations will allow for greater confidence in model

performance (Belsley et al. 1980; Kutner et al. 2004).

Until specific sample sizes are well described,

developers of new W
s

equations should use the

recommended number of populations and sample sizes

(Brown and Murphy 1996; Gerow et al. 2005). Brown

and Murphy (1996) suggested a minimum of 50

populations be used during development of the RLP

W
s

equation. For the EmP method, Gerow et al. (2005)

recommended a minimum of 50 fish per length-class or

a minimum of 20 fish per length-class if they have been

sampled from 50 different populations. In developing

new W
s

equations, we recommend researchers use a

minimum of 50 fish per length-class that have been

sampled from at least 20 independent populations.

Including at least the accepted minimums will

contribute to ensuring a W
s

equation that contains a

large number of individuals.

We also recommend evaluating any newly devel-

oped equations against an equally large, fully indepen-

dent data set collected from across the geographic

range of the species. Without a large, independent data

set, evaluating the predictive abilities of W
s

equations

and determining associated length-related biases would

be difficult. We have not investigated the minimum

sample size needed for an independent data set.

However, the use of an independent data set will avoid

the constraints of the original data set (e.g., sample

size, sampling distribution) while encompassing more

of the natural variability of the entire population, thus

providing an unbiased assessment of the equations.

Gerow et al. (2005) made several suggestions with

regard to reevaluating existing W
s

equations and

development methods. One such idea was that the

75th percentile may not be the most optimal target for

management purposes. To our knowledge, there have

been no comparative investigations into the mathemat-

ical properties of the 50th and 75th percentiles across a

range of sizes for a given species. However, confidence

limits for 50th percentiles are more precise than those

of the 75th percentile (Kutner et al. 2004). We

conducted a preliminary comparison of the perfor-

mance of W
s

equations generated with the 75th versus

the 50th percentiles and found some indication that the

50th percentile could reduce length-related issues

currently exacerbating W
s

development (unpublished

data).

Finally, because our evaluation of Ws equations

derived from either method showed little difference in

length-related biases, we cannot support redeveloping

published RLP W
s

equations using the EmP method.

We believe that the previously published W
s

equations

should be used for management and research purposes

until a new method has been developed from large,

quality-controlled data for several different species that

has been successfully tested against associated inde-

pendent and large data sets encompassing the geo-

graphic ranges of those species.
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